
Compositional Equivalence Checking of Imperative

Programs: A Game-Semantic Approach

Luke Ong

Oxford University Computing Laboratory

Intel Symposium, Technion, 8 Sep 2009

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 1 / 35

Software Model Checking

Model checking: Extremely successful in verifying finite-state processes.
E.g. digital circuits and communication protocols.

Over the past decade, huge strides made in verification of 1st-order
imperative programs. Many tools: SLAM, Blast, SatAbs, etc.

State-of-the-art tools use abstraction techniques, as exemplified by
CEGAR (Counter-Example Guided Abstraction Refinement), and
acceleration methods such as SAT- and SMT-solvers.

An Alternative Approach

Start from an accurate denotational semantics of the program; then derive
an appropriate model of computation sufficiently concrete (and tractable)
for verification.

Advantages: Soundness and completeness inherited by the model; method
remains compositional.

Is there such a semantics?
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 2 / 35

Software Model Checking

Model checking: Extremely successful in verifying finite-state processes.
E.g. digital circuits and communication protocols.

Over the past decade, huge strides made in verification of 1st-order
imperative programs. Many tools: SLAM, Blast, SatAbs, etc.

State-of-the-art tools use abstraction techniques, as exemplified by
CEGAR (Counter-Example Guided Abstraction Refinement), and
acceleration methods such as SAT- and SMT-solvers.

An Alternative Approach

Start from an accurate denotational semantics of the program; then derive
an appropriate model of computation sufficiently concrete (and tractable)
for verification.

Advantages: Soundness and completeness inherited by the model; method
remains compositional.

Is there such a semantics?
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 2 / 35

Software Model Checking based on Game Semantics

[Abramsky, Jagadeesan, Malacaria, Hyland, O., Hanno, McCusker, etc.]

Game semantics has emerged as a powerful paradigm for giving
semantics to a wide range of programming languages (procedural,
higher-order functional, polymorphic, reference types, non-local control,
concurrent, probabilistic, etc.).

These models are highly accurate (fully abstract).

Promising features of game semantics

Clear operational content, while admitting compositional methods in
the style of denotational semantics.

Strategies are highly-constrained processes, admitting
automata-theoretic representations.

Rich mathematical structures yielding accurate models of advanced
high-level programming languages.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 3 / 35

Software Model Checking based on Game Semantics

[Abramsky, Jagadeesan, Malacaria, Hyland, O., Hanno, McCusker, etc.]

Game semantics has emerged as a powerful paradigm for giving
semantics to a wide range of programming languages (procedural,
higher-order functional, polymorphic, reference types, non-local control,
concurrent, probabilistic, etc.).

These models are highly accurate (fully abstract).

Promising features of game semantics

Clear operational content, while admitting compositional methods in
the style of denotational semantics.

Strategies are highly-constrained processes, admitting
automata-theoretic representations.

Rich mathematical structures yielding accurate models of advanced
high-level programming languages.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 3 / 35

Challanges of the Approach

To carry over methods of model checking to much more structured,
modern programming situations, in which the following features are
important:

data-types: references (pointers), recursive types

non-local control flow: exceptions, call-cc, etc.

modularity principles: e.g. object orientation: inheritance and
subtyping

higher-order features: higher-order procedures; closures; components

variables and names: passing mechanisms, life-span, scoping rules

concurrency and non-determinism: synchronization, multithreading,
etc.

Aim:

Combine results and insights in (game) semantics, with techniques in
verification.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 4 / 35

Outline

1 Idealized Algol and Observational Equivalence

2 Game Semantics: An Impressionistic Introduction

3 Using Game Semantics to Decide Observational Equivalence

4 Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 5 / 35

Outline

1 Idealized Algol and Observational Equivalence

2 Game Semantics: An Impressionistic Introduction

3 Using Game Semantics to Decide Observational Equivalence

4 Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 6 / 35

Idealized Algol (IA) [Reynolds 80]

A compact language that elegantly combines state-based procedural and
higher-order functional programming, using a simple type-theoretic
framework. IA is essentially a call-by-name variant of Core ML.

IA Types:















T ::= exp numbers-valued expressions
| com commands
| var assignable variables
| T → T function space

IA Terms:

imperative constructs
block-allocated local assignable variables
PCF (= simply-typed λ-calculus + basic arithmetics + conditionals +
fixpoint operators).

In this talk, we suppress higher-order features, though not completely.
(E.g. Recursive 1st-order procedures are fixpoints of 2nd-order
functionals.)
ord(o) := 0 ord(A → B) := max(ord(A) + 1, ord(B))

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 7 / 35

Idealized Algol (IA) [Reynolds 80]

A compact language that elegantly combines state-based procedural and
higher-order functional programming, using a simple type-theoretic
framework. IA is essentially a call-by-name variant of Core ML.

IA Types:















T ::= exp numbers-valued expressions
| com commands
| var assignable variables
| T → T function space

IA Terms:

imperative constructs
block-allocated local assignable variables
PCF (= simply-typed λ-calculus + basic arithmetics + conditionals +
fixpoint operators).

In this talk, we suppress higher-order features, though not completely.
(E.g. Recursive 1st-order procedures are fixpoints of 2nd-order
functionals.)
ord(o) := 0 ord(A → B) := max(ord(A) + 1, ord(B))

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 7 / 35

Examples

x : exp |- new X in

new Y in

X := x;

Y := 1;

while !X > 0 do

{
Y := !Y * !X;

X := !X - 1

};
!Y

Notation. Assignable variables ranged over by X ,Y , etc.

|- fun f : (exp -> exp) -> exp .

f (fun x : exp . f (fun y : exp . x))

λf .f (λx .f (λy .x)) : ((exp → exp) → exp) → exp
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 8 / 35

Examples

x : exp |- new X in

new Y in

X := x;

Y := 1;

while !X > 0 do

{
Y := !Y * !X;

X := !X - 1

};
!Y

Notation. Assignable variables ranged over by X ,Y , etc.

|- fun f : (exp -> exp) -> exp .

f (fun x : exp . f (fun y : exp . x))

λf .f (λx .f (λy .x)) : ((exp → exp) → exp) → exp
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 8 / 35

Observational (or Contextual) Equivalence

[Milner 1975, Plotkin 1977, ... Full Abstraction Problem for PCF]

Intuitively M ≈ N means

“M and N are mutually substitutable in every program context
without causing any difference in the computational outcome”.

Definition M ≈ N just if for every context C [] such that C [M] and C [N]
are programs (i.e. closed terms of base type), for every value v

C [M] ⇓ v ⇐⇒ C [N] ⇓ v .

Quantification over all program contexts C [-] ensures that potential
side effects of M and N are taken fully into account.
≈ is an intuitively compelling notion of program equivalence, but very
hard to reason about.
An appropriate notion of equivalence for regression verification, for
maintaining backwards compatibility of code. (Cf. Strichman’s
lecture)
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 9 / 35

Observational (or Contextual) Equivalence

[Milner 1975, Plotkin 1977, ... Full Abstraction Problem for PCF]

Intuitively M ≈ N means

“M and N are mutually substitutable in every program context
without causing any difference in the computational outcome”.

Definition M ≈ N just if for every context C [] such that C [M] and C [N]
are programs (i.e. closed terms of base type), for every value v

C [M] ⇓ v ⇐⇒ C [N] ⇓ v .

Quantification over all program contexts C [-] ensures that potential
side effects of M and N are taken fully into account.
≈ is an intuitively compelling notion of program equivalence, but very
hard to reason about.
An appropriate notion of equivalence for regression verification, for
maintaining backwards compatibility of code. (Cf. Strichman’s
lecture)
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 9 / 35

The theory of observational equivalence is rich

Example 1: In Algol-like languages, state changes are irreversible.

I.e. “Snap-back”, a construct

Snapback : com → com

that runs its command-argument and then immediately undoes all the
state-changes caused by the command, is not definable in IA.

Non-definability of snap-back is equivalent to:

p : com → com

⊢ new X := 0 in {p (X := 1) ; if !X = 1 then Ω else skip}

≈ p Ω

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 10 / 35

The theory of observational equivalence is rich

Example 2: Parametricity

Terms that have the “same underlying algorithm” are observationally
equivalent.

p : com → bool → com

⊢ new X := 1 in {p (X := −!X) (!X > 0)}

≈ new Y := t in {p (Y := ¬!Y) (!Y)}

IA is Turing powerful: observational equivalence is not decidable.

Questions
1 For which fragment of IA is observational equivalence decidable?

2 Classify these fragments.

Game semantics helps to answer these questions.
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 11 / 35

The theory of observational equivalence is rich

Example 2: Parametricity

Terms that have the “same underlying algorithm” are observationally
equivalent.

p : com → bool → com

⊢ new X := 1 in {p (X := −!X) (!X > 0)}

≈ new Y := t in {p (Y := ¬!Y) (!Y)}

IA is Turing powerful: observational equivalence is not decidable.

Questions
1 For which fragment of IA is observational equivalence decidable?

2 Classify these fragments.

Game semantics helps to answer these questions.
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 11 / 35

Outline

1 Idealized Algol and Observational Equivalence

2 Game Semantics: An Impressionistic Introduction

3 Using Game Semantics to Decide Observational Equivalence

4 Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 12 / 35

Game Interpretation of Types and Programs: Some Generalities

Types of a programming language are interpreted as (2-person) games.

Player Point of View

P (Proponent) System Term being modelled

O (Opponent) Environment Program context

Programs are interpreted as strategies for playing these games.

Game semantics is inherently a semantics of open systems; the meaning of
a program is given by its potential interactions with the environment.

Compositionality: The key operation is plugging two strategies together,
so that each actualizes part of the environment of the other.

σ : A −→ B τ : B −→ C

σ; τ : A −→ C

This exploits the P/O duality: σ’s P-move at B become an O-move of τ

(and vice versa).
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 13 / 35

Game Interpretation of Types and Programs: Some Generalities

Types of a programming language are interpreted as (2-person) games.

Player Point of View

P (Proponent) System Term being modelled

O (Opponent) Environment Program context

Programs are interpreted as strategies for playing these games.

Game semantics is inherently a semantics of open systems; the meaning of
a program is given by its potential interactions with the environment.

Compositionality: The key operation is plugging two strategies together,
so that each actualizes part of the environment of the other.

σ : A −→ B τ : B −→ C

σ; τ : A −→ C

This exploits the P/O duality: σ’s P-move at B become an O-move of τ

(and vice versa).
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 13 / 35

Innocent Game or HON Game: Some Intuitions

[Hyland+O. (1995) Info & Comp 2000; Nickau 96. Precursors: Lorenz and

Lorenzen, Conway, Joyal, Blass, Berry + Curien.]

Play as dialogue between O and P

Four types of move: P-questions, O-answers, O-questions, P-answers.

A play is an O/P-alternating sequence of moves, satisfying:

Rules of Civil Conversation

Justification:

A question is asked only if the dialogue warrants it at that point.

An answer is proferred only if a question expecting it is pending.

Well-Bracketing: “Last asked first answered.”

Outcome of play: A dialogue ends when the opening question is
answered. (We don’t care about winning: just play to the bitter end!)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 14 / 35

Innocent Game or HON Game: Some Intuitions

[Hyland+O. (1995) Info & Comp 2000; Nickau 96. Precursors: Lorenz and

Lorenzen, Conway, Joyal, Blass, Berry + Curien.]

Play as dialogue between O and P

Four types of move: P-questions, O-answers, O-questions, P-answers.

A play is an O/P-alternating sequence of moves, satisfying:

Rules of Civil Conversation

Justification:

A question is asked only if the dialogue warrants it at that point.

An answer is proferred only if a question expecting it is pending.

Well-Bracketing: “Last asked first answered.”

Outcome of play: A dialogue ends when the opening question is
answered. (We don’t care about winning: just play to the bitter end!)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 14 / 35

Basics of Game Semantics by Examples

Take ⊢ M : A.

Type A is interpreted as (a 2-player game called) arena [[A]].

Term M is interpreted as a P-strategy [[M]] for playing in arena [[A]].

An arena is a forest (the nodes are the moves; edge relation is called
enabling); each move has a label from {PQ,PA,OQ,OA }.

Example. The arena [[exp]]

OQ q

PA 0 1 2 3 · · ·

[[2 : exp]] is the P-strategy:

OQ q

PA 2

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 15 / 35

Basics of Game Semantics by Examples

Take ⊢ M : A.

Type A is interpreted as (a 2-player game called) arena [[A]].

Term M is interpreted as a P-strategy [[M]] for playing in arena [[A]].

An arena is a forest (the nodes are the moves; edge relation is called
enabling); each move has a label from {PQ,PA,OQ,OA }.

Example. The arena [[exp]]

OQ q

PA 0 1 2 3 · · ·

[[2 : exp]] is the P-strategy:

OQ q

PA 2

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 15 / 35

Basics of Game Semantics by Examples

Take ⊢ M : A.

Type A is interpreted as (a 2-player game called) arena [[A]].

Term M is interpreted as a P-strategy [[M]] for playing in arena [[A]].

An arena is a forest (the nodes are the moves; edge relation is called
enabling); each move has a label from {PQ,PA,OQ,OA }.

Example. The arena [[exp]]

OQ q

PA 0 1 2 3 · · ·

[[2 : exp]] is the P-strategy:

OQ q

PA 2

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 15 / 35

Interpreting if-then-else

Write “if B then M elseN” in prefix form:

if B M N : exp

if : exp → exp → exp → exp is interpreted as a P-strategy

program context []B M N determines an O-strategy

for playing in the arena [[exp → exp → exp → exp]]

B M N
exp → exp → exp → exp

OQ q

PQ q

OA t

PQ q

OA 3

PA 3

(assuming O-strategy given by [] t 3 4).
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 16 / 35

Interpreting if-then-else

Write “if B then M elseN” in prefix form:

if B M N : exp

if : exp → exp → exp → exp is interpreted as a P-strategy

program context []B M N determines an O-strategy

for playing in the arena [[exp → exp → exp → exp]]

B M N
exp → exp → exp → exp

OQ q

PQ q

OA t

PQ q

OA 3

PA 3

(assuming O-strategy given by [] t 3 4).
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 16 / 35

Interpreting if-then-else

Write “if B then M elseN : exp” in prefix-form:

if B M N : exp

if : exp → exp → exp → exp is interpreted as a P-strategy

program context []B M N determines an O-strategy

for playing in the arena [[exp → exp → exp → exp]]

B M N
exp → exp → exp → exp

OQ q

PQ q

OA f
PQ q

OA 4

PA 4

(assuming O-strategy given by [] f 3 4).
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 17 / 35

Interpreting commands

The arena [[com]]

OQ run

PA done

[[skip : com]] is the P-strategy:

OQ run

PA done

Interpreting sequential composition: ; : com → com → com

com → com → com
OQ run

PQ run

OA done
PQ run

OA done
PA done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 18 / 35

Interpreting commands

The arena [[com]]

OQ run

PA done

[[skip : com]] is the P-strategy:

OQ run

PA done

Interpreting sequential composition: ; : com → com → com

com → com → com
OQ run

PQ run

OA done
PQ run

OA done
PA done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 18 / 35

Interpreting commands

The arena [[com]]

OQ run

PA done

[[skip : com]] is the P-strategy:

OQ run

PA done

Interpreting sequential composition: ; : com → com → com

com → com → com
OQ run

PQ run

OA done
PQ run

OA done
PA done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 18 / 35

Interpreting var

Following Reynolds, we view a variable type as given (in an object-oriented
style) by a product of its read method and its write method. Thus

var := exp × (
∏

i∈ω

com)

read-part: first component is the value held at that location

write-part: second component contains countably many commands,
namely, to write 0 (respectively 1, 2, etc.) to that location.

Thus arena [[var]] is the product arena [[exp]] ×
∏

i∈ω
[[com]]:

OQ read write(0) write(1) write(2) · · ·

PA 0 1 2 · · · ok ok ok · · ·

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 19 / 35

Interpreting var

Following Reynolds, we view a variable type as given (in an object-oriented
style) by a product of its read method and its write method. Thus

var := exp × (
∏

i∈ω

com)

read-part: first component is the value held at that location

write-part: second component contains countably many commands,
namely, to write 0 (respectively 1, 2, etc.) to that location.

Thus arena [[var]] is the product arena [[exp]] ×
∏

i∈ω
[[com]]:

OQ read write(0) write(1) write(2) · · ·

PA 0 1 2 · · · ok ok ok · · ·

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 19 / 35

Interpreting assignment: X := M

Write X := M as assign X M. Thus

assign : var → exp → com is interpreted as a P-strategy

context []X M determines an O-strategy

for playing in the arena [[var → exp → com]].

X M
var → exp → com

OQ run

PQ q

OA 5

PQ write(5)

OA ok
PA done

(assuming O-strategy is given by context []X 5)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 20 / 35

Interpreting assignment: X := M

Write X := M as assign X M. Thus

assign : var → exp → com is interpreted as a P-strategy

context []X M determines an O-strategy

for playing in the arena [[var → exp → com]].

X M
var → exp → com

OQ run

PQ q

OA 5

PQ write(5)

OA ok
PA done

(assuming O-strategy is given by context []X 5)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 20 / 35

Interpreting block-allocated local variables: new

We decompose the formation

Γ, x : var ⊢ M : com

Γ ⊢ new x := n inM : com

into two constructions:

1 Currying: Γ ⊢ λx : var.M : var → com

2 Application by a constant: newn : (var → com) → com.

Thus we have

new x := n inM := newn (λx : var.M)

Accordingly [[new x := n inM]] is the composite

[[Γ]]
[[Γ⊢λx :var.M]]

(var → com)
newn com

Question. What is the strategy newn?
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 21 / 35

Interpreting block-allocated local variables: new

We decompose the formation

Γ, x : var ⊢ M : com

Γ ⊢ new x := n inM : com

into two constructions:

1 Currying: Γ ⊢ λx : var.M : var → com

2 Application by a constant: newn : (var → com) → com.

Thus we have

new x := n inM := newn (λx : var.M)

Accordingly [[new x := n inM]] is the composite

[[Γ]]
[[Γ⊢λx :var.M]]

(var → com)
newn com

Question. What is the strategy newn?
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 21 / 35

The strategy newn : (var → com) → com

The plays in newn should correspond to the behaviour of a prima facie
variable (initialized to n). Namely, they should satisfy:

Good Variable Property

Whenever the variable is read, it yields the value last written to it.

Thus, the (maximal) plays are defined to be words matching the regular
expression:

q · q〈1〉 · (read · n)∗ ·





∑

i≥0

write(i) · ok · (read · i)∗





∗

· done〈1〉 · done

The (infinite) alphabet is the move-set of (var → com〈1〉) → com (subject
to the labelling convention to distinguish copies of the same subarena).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 22 / 35

Good Variable Behaviour: An Example Play in newn

(var → com〈1〉) → com

OQ run

PQ run〈1〉

OQ read

PA n

OQ write(5)

PA ok

OQ read

PA 9

OA done〈1〉

PA done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 23 / 35

Outline

1 Idealized Algol and Observational Equivalence

2 Game Semantics: An Impressionistic Introduction

3 Using Game Semantics to Decide Observational Equivalence

4 Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 24 / 35

Finitary Idealized Algol IAf : recursion-free, finite base types

Recall: ord(b) := 0 ord(T1 → T2) := max(ord(T1) + 1, ord(T2))

An IAf -term x1 : T1, · · · , xn : Tn ⊢ M : T is an i-th order term just if
ord(Tj) < i and ord(T) ≤ i .

IAi : collection of i -th order IAf -terms.

IAi+while is IAi augmented by while-loops

IAi+Yj (where j < i) is IAi augmented by

Γ, f : T ⊢ M : T

Γ ⊢ µf T .M : T

where the premise is i -th order, and ord(T) ≤ j .
I.e. IAi+Yj consists of IAi and recursively-defined terms of order at
most j .

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 25 / 35

First steps in Algorithmic Game Semantics

Theorem (Full Abstraction, Abramsky + McCusker 1997)

Observational equivalence of IA is characterized by complete plays
(i.e. plays ending with a move that answers the opening question):

M ≈ N ⇐⇒ cplays([[Γ ⊢ M : A]]) = cplays([[Γ ⊢ N : A]])

At low types, game semantics admits a concrete representation.

Theorem (Ghica + McCusker 2000)

In IA2+while:

1 cplays([[Γ ⊢ M : A]]) is regular. Further

2 cplays([[Γ ⊢ M : A]]), given as a DFA (or regular expression), can be
constructed by recursion over syntax.

Hence ≈ in IA2 reduces to the problem of DFA-equivalence.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 26 / 35

First steps in Algorithmic Game Semantics

Theorem (Full Abstraction, Abramsky + McCusker 1997)

Observational equivalence of IA is characterized by complete plays
(i.e. plays ending with a move that answers the opening question):

M ≈ N ⇐⇒ cplays([[Γ ⊢ M : A]]) = cplays([[Γ ⊢ N : A]])

At low types, game semantics admits a concrete representation.

Theorem (Ghica + McCusker 2000)

In IA2+while:

1 cplays([[Γ ⊢ M : A]]) is regular. Further

2 cplays([[Γ ⊢ M : A]]), given as a DFA (or regular expression), can be
constructed by recursion over syntax.

Hence ≈ in IA2 reduces to the problem of DFA-equivalence.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 26 / 35

A Complete Classification of Decidable Fragments of Finitary IA

Obs EquivL: Given β-nfs M and N in sublanguage L of IA, does M ≈ N?

pure +while +Y0 +Y1

IA0 PTIME – – –
IA1 coNP PSPACE DPDA Equiv undecidable
IA2 PSPACE PSPACE DPDA Equiv undecidable
IA3 EXPTIME EXPTIME DPDA Equiv undecidable

IAi , i ≥ 4 undecidable undecidable undecidable undecidable

Undecidability results: O. LICS’02 and Murawski LICS’03.
coNP + PSPACE results: Murawski TCS 2005.
EXPTIME results: O. LICS’02; Murawski + Walukiewicz FOSSACS’05.
DPDA Equiv results: Murawski, Walukiewicz + O. ICALP’05.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 27 / 35

Deciding ≈ for IA3+while is EXPTIME-complete (M.+W.’05)

Visibly pushdown automata (Alur+Madhusudan, STOC’04)

Stack action is determined by input alphabet read:
Σ = Σpush + Σpop + Σnoop

Excellent closure properties (almost as good as regular languages)

VPA-languages: Closed under complementation and intersection
(cf. DPDA).

L(A) ⊆ L(B) ⇐⇒ L(A) ∩ L(B) = ∅

is EXPTIME-complete, and in PTIME if B deterministic.

Theorem (Murawski+Walukiewicz 2005)

The complete plays of (IA3+while)-terms are VPA-recognizable.

EXPTIME-hardness: by reducing the EXPTIME-complete problem
Finite Tree Automata Equivalence (Seidl 1990) to it.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 28 / 35

Deciding ≈ for IAi+Y0 (for i = 1, 2, 3) is equivalent to DPDA-Equiv

[Murawski, O. + Walukiewicz ICALP’05]

IAi+Y0: Only terms of base type can call themselves recursively. This
includes all tail-recursive functions (i.e. iterations) and:

Example. Non tail-recursive ground recursion:

c : com, b : bool ⊢ µpcom.if b then (p ; c ; p) else skip : com

DPDA-Equivalenc hardness

Theorem

There is a translation that maps a DPDA A to a (IA1+Y0)-term
x : exp ⊢ MA : com such that for any A,B, we have L(A) = L(B) iff
MA ≈ MB .

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 29 / 35

Outline

1 Idealized Algol and Observational Equivalence

2 Game Semantics: An Impressionistic Introduction

3 Using Game Semantics to Decide Observational Equivalence

4 Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 30 / 35

HOMER: Higher-order Observational-equivalence Model checkER

[Hopkins + O. CAV 2009]

Homer: a prototype tool implementing Murawski and Walukiewicz’s
algorithm.

Homer maps IA3+while terms to VPA representing the complete plays in
their game semantics, then check for the equivalence of the VPA.
If the input term is at most 2nd-order (possibly with iteration), the
VPA-compile is just a DFA.

Counterexample. If the terms are inequivalent, Homer will produce both
a game-semantic and an operational-semantic counterexample, in the form
of a play and a separating context respectively.

Property checking. Homer can also model check a term against a regular
property or LTL formula.

Homer is written in about 8 KLOC of F#, including about 600 LOC for
the VPA toolkit. It is the first model checker for third-order programs.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 31 / 35

HOMER: Higher-order Observational-equivalence Model checkER

[Hopkins + O. CAV 2009]

Homer: a prototype tool implementing Murawski and Walukiewicz’s
algorithm.

Homer maps IA3+while terms to VPA representing the complete plays in
their game semantics, then check for the equivalence of the VPA.
If the input term is at most 2nd-order (possibly with iteration), the
VPA-compile is just a DFA.

Counterexample. If the terms are inequivalent, Homer will produce both
a game-semantic and an operational-semantic counterexample, in the form
of a play and a separating context respectively.

Property checking. Homer can also model check a term against a regular
property or LTL formula.

Homer is written in about 8 KLOC of F#, including about 600 LOC for
the VPA toolkit. It is the first model checker for third-order programs.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 31 / 35

Example 1

x : exp |- x

x : exp |- new X in (X := x ; if !X = 0 then !X else !X)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 32 / 35

Example 1’

x : exp |- x

x : exp |- if x = 0 then x else x

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 33 / 35

Example 2: Sorting algorithms

Why sorting?
“... it seems impossible to use Model Checking to verify that a sorting
algorithm is correct since sorting correctness is a data-oriented property
involving several quantifications and data structures.” [Bandera user
manual]

Example: Equivalence of (respective implementations of) bubble sort and
insertion sort.

Program parameterized over array size (n) and basic data type (Z
MOD 3).

The DFA model is fully abstract. Only the actions of the non-local
array are observable, and hence, represented.

An array of size 20 (over integers MOD 3) has circa 320 states (about
3.5 billion). Our model is highly abstract (though still accurate): it
has only about 5500 states!

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 34 / 35

Conclusions and Further Directions

Game semantics has clear operational content, while admitting
compositional methods in the style of denotational semantics.

The game-semantic approach to observational equivalence checking is
fully automatic, sound and complete, and compositional.

The model (given by complete plays) extracted is highly accurate, yet
“compact”.

To extend to infinite data types, use abstraction refinement
techniques (Bakewell + Ghica, TACAS08) or prove auxiliary
data-independence results.

Further directions

1 Performance: Exploit abstraction refinement techniques (CEGAR),
and acceleration technologies (SMT-solvers) to improve scalability.

2 Challenge of verifying highly structured programs (e.g. object
orientation / functional features e.g. Javascript, Perl, etc).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 35 / 35

Conclusions and Further Directions

Game semantics has clear operational content, while admitting
compositional methods in the style of denotational semantics.

The game-semantic approach to observational equivalence checking is
fully automatic, sound and complete, and compositional.

The model (given by complete plays) extracted is highly accurate, yet
“compact”.

To extend to infinite data types, use abstraction refinement
techniques (Bakewell + Ghica, TACAS08) or prove auxiliary
data-independence results.

Further directions

1 Performance: Exploit abstraction refinement techniques (CEGAR),
and acceleration technologies (SMT-solvers) to improve scalability.

2 Challenge of verifying highly structured programs (e.g. object
orientation / functional features e.g. Javascript, Perl, etc).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 35 / 35

	Idealized Algol and Observational Equivalence
	Game Semantics: An Impressionistic Introduction
	Using Game Semantics to Decide Observational Equivalence
	Homer: Higher-order Observational-equivalence Model checkER

