Compositional Equivalence Checking of Imperative
Programs: A Game-Semantic Approach

Luke Ong

Oxford University Computing Laboratory

Intel Symposium, Technion, 8 Sep 2009

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 1/35

Software Model Checking

Model checking: Extremely successful in verifying finite-state processes.
E.g. digital circuits and communication protocols.

Over the past decade, huge strides made in verification of 1st-order
imperative programs. Many tools: SLAM, Blast, SatAbs, etc.

State-of-the-art tools use abstraction techniques, as exemplified by
CEGAR (Counter-Example Guided Abstraction Refinement), and
acceleration methods such as SAT- and SMT-solvers.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 2/35

Software Model Checking

Model checking: Extremely successful in verifying finite-state processes.
E.g. digital circuits and communication protocols.

Over the past decade, huge strides made in verification of 1st-order
imperative programs. Many tools: SLAM, Blast, SatAbs, etc.

State-of-the-art tools use abstraction techniques, as exemplified by
CEGAR (Counter-Example Guided Abstraction Refinement), and
acceleration methods such as SAT- and SMT-solvers.

An Alternative Approach

Start from an accurate denotational semantics of the program; then derive
an appropriate model of computation sufficiently concrete (and tractable)
for verification.

Advantages: Soundness and completeness inherited by the model; method
remains compositional.

Is there such a semantics?

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 2/35

Software Model Checking based on Game Semantics

[Abramsky, Jagadeesan, Malacaria, Hyland, O., Hanno, McCusker, etc.]

Game semantics has emerged as a powerful paradigm for giving
semantics to a wide range of programming languages (procedural,
higher-order functional, polymorphic, reference types, non-local control,
concurrent, probabilistic, etc.).

These models are highly accurate (fully abstract).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 3/35

Software Model Checking based on Game Semantics

[Abramsky, Jagadeesan, Malacaria, Hyland, O., Hanno, McCusker, etc.]

Game semantics has emerged as a powerful paradigm for giving
semantics to a wide range of programming languages (procedural,
higher-order functional, polymorphic, reference types, non-local control,
concurrent, probabilistic, etc.).

These models are highly accurate (fully abstract).

Promising features of game semantics
@ Clear operational content, while admitting compositional methods in
the style of denotational semantics.
@ Strategies are highly-constrained processes, admitting
automata-theoretic representations.
@ Rich mathematical structures yielding accurate models of advanced
high-level programming languages.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 3/35

Challanges of the Approach

To carry over methods of model checking to much more structured,
modern programming situations, in which the following features are

important:
@ data-types: references (pointers), recursive types
@ non-local control flow: exceptions, call-cc, etc.
@ modularity principles: e.g. object orientation: inheritance and
subtyping
@ higher-order features: higher-order procedures; closures; components
@ variables and names: passing mechanisms, life-span, scoping rules
@ concurrency and non-determinism: synchronization, multithreading,
etc.
Aim:

Combine results and insights in (game) semantics, with techniques in
verification.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 4 /35

Outline

@ !dealized Algol and Observational Equivalence

© Game Semantics: An Impressionistic Introduction

© Using Game Semantics to Decide Observational Equivalence

@ Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009

5/35

Outline

@ !dealized Algol and Observational Equivalence

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 6 /35

Idealized Algol (IA) [Reynolds 80]

A compact language that elegantly combines state-based procedural and
higher-order functional programming, using a simple type-theoretic
framework. A is essentially a call-by-name variant of Core ML.

T = exp numbers-valued expressions
com commands
IA Types: | . :
| var assignable variables

T — T function space

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 7/35

Idealized Algol (IA) [Reynolds 80]

A compact language that elegantly combines state-based procedural and
higher-order functional programming, using a simple type-theoretic
framework. A is essentially a call-by-name variant of Core ML.

T = exp numbers-valued expressions
com commands
IA Types: | . :
| var assignable variables
| T — T function space
IA Terms:

@ imperative constructs
@ block-allocated local assignable variables
@ PCF (= simply-typed A-calculus + basic arithmetics + conditionals +
fixpoint operators).
In this talk, we suppress higher-order features, though not completely.
(E.g. Recursive 1st-order procedures are fixpoints of 2nd-order
functionals.)
ord(o) :=0 ord(A — B) := max(ord(A) + 1, 0rd(B))
Equivalence Checking Haifa, 8 Sep 2009 7 /35

Examples

X : exp |- new X in
new Y in
X = x;
Y :=1;
while !X > 0 do

{

Y
X

'Y * 1X;
X -1

}s

'Y
Notation. Assignable variables ranged over by X, Y, etc.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 8/35

Examples

X : exp |- new X in
new Y in
X = x;
Y :=1;

while !X > 0 do

{

Y :
X :

'Y * 1X;
X -1

}s

'Y
Notation. Assignable variables ranged over by X, Y, etc.

|- fun £ : (exp -> exp) -> exp .
f funx : exp . f (funy : exp . x))

A £ (Ax.f(Ay.x)) : ((exp — exp) — exp) — exp
Equivalence Checking Haifa, 8 Sep 2009 8/35

Observational (or Contextual) Equivalence

[Milner 1975, Plotkin 1977, ... Full Abstraction Problem for PCF]
Intuitively M ~ N means

“M and N are mutually substitutable in every program context
without causing any difference in the computational outcome”.

Definition M ~ N just if for every context C[] such that C[M] and C[N]
are programs (i.e. closed terms of base type), for every value v

CMl v <= C[N] | v

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 9/35

Observational (or Contextual) Equivalence

[Milner 1975, Plotkin 1977, ... Full Abstraction Problem for PCF]
Intuitively M ~ N means

“M and N are mutually substitutable in every program context
without causing any difference in the computational outcome”.

Definition M ~ N just if for every context C[] such that C[M] and C[N]
are programs (i.e. closed terms of base type), for every value v

CMl v <= C[N] | v

@ Quantification over all program contexts C[-] ensures that potential
side effects of M and N are taken fully into account.

@ = is an intuitively compelling notion of program equivalence, but very
hard to reason about.

@ An appropriate notion of equivalence for regression verification, for
maintaining backwards compatibility of code. (Cf. Strichman's

lecture
Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 9/35

The theory of observational equivalence is rich
Example 1: In Algol-like languages, state changes are irreversible.
l.e. “"Snap-back”, a construct

Snapback : com — com

that runs its command-argument and then immediately undoes all the
state-changes caused by the command, is not definable in IA.

Non-definability of snap-back is equivalent to:

p : com — com
F newX :=0in{p (X :=1);if L.X = 1then Qelseskip}

~ pQ

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 10 / 35

The theory of observational equivalence is rich

Example 2: Parametricity

Terms that have the “same underlying algorithm” are observationally
equivalent.

p : com — bool — com
Fonew X :=1lin{p(X:=-1X)(IX >0)}
~ new Y :=tin{p(Y :=-1Y)(1Y)}

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 11 /35

The theory of observational equivalence is rich

Example 2: Parametricity

Terms that have the “same underlying algorithm” are observationally
equivalent.
p : com — bool — com
Fonew X :=1lin{p(X:=-1X)(IX >0)}
~ new Y :=tin{p(Y :=-1Y)(1Y)}

IA is Turing powerful: observational equivalence is not decidable.

Questions
© For which fragment of IA is observational equivalence decidable?

@ C(lassify these fragments.

Game semantics helps to answer these questions.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 11 /35

Outline

© Game Semantics: An Impressionistic Introduction

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 12 / 35

Game Interpretation of Types and Programs: Some Generalities

Types of a programming language are interpreted as (2-person) games.

‘ Player

Point of View

P (Proponent)

System

Term being modelled

O (Opponent)

Environment

Program context

Programs are interpreted as strategies for playing these games.

Luke Ong (Oxford)

Equivalence Checking

Haifa, 8 Sep 2009 13 / 35

Game Interpretation of Types and Programs: Some Generalities

Types of a programming language are interpreted as (2-person) games.

‘ Player ‘ Point of View ‘

P (Proponent) | System Term being modelled

O (Opponent) | Environment | Program context

Programs are interpreted as strategies for playing these games.

Game semantics is inherently a semantics of open systems; the meaning of
a program is given by its potential interactions with the environment.

Compositionality: The key operation is plugging two strategies together,
so that each actualizes part of the environment of the other.

c:A—B 7:B—C
oT:A— C

This exploits the P/O duality: o's P-move at B become an O-move of 7
(and vice versa).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 13 / 35

Innocent Game or HON Game: Some Intuitions

[Hyland4-0O. (1995) Info & Comp 2000; Nickau 96. Precursors: Lorenz and
Lorenzen, Conway, Joyal, Blass, Berry 4+ Curien.]
Play as dialogue between O and P

Four types of move: P-questions, O-answers, O-questions, P-answers.

A play is an O/P-alternating sequence of moves, satisfying:

Rules of Civil Conversation
Justification:
@ A question is asked only if the dialogue warrants it at that point.

@ An answer is proferred only if a question expecting it is pending.

Well-Bracketing: “Last asked first answered.”

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 14 / 35

Innocent Game or HON Game: Some Intuitions

[Hyland4-0O. (1995) Info & Comp 2000; Nickau 96. Precursors: Lorenz and
Lorenzen, Conway, Joyal, Blass, Berry 4+ Curien.]
Play as dialogue between O and P

Four types of move: P-questions, O-answers, O-questions, P-answers.

A play is an O/P-alternating sequence of moves, satisfying:

Rules of Civil Conversation
Justification:
@ A question is asked only if the dialogue warrants it at that point.

@ An answer is proferred only if a question expecting it is pending.

Well-Bracketing: “Last asked first answered.”

Outcome of play: A dialogue ends when the opening question is
answered. (We don't care about winning: just play to the bitter end!)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 14 / 35

Basics of Game Semantics by Examples

Take - M : A.

@ Type A is interpreted as (a 2-player game called) arena [A].
@ Term M is interpreted as a P-strategy [M] for playing in arena [A].

An arena is a forest (the nodes are the moves; edge relation is called
enabling); each move has a label from { PQ, PA, OQ, OA }.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 15 / 35

Basics of Game Semantics by Examples

Take - M : A.

@ Type A is interpreted as (a 2-player game called) arena [A].
@ Term M is interpreted as a P-strategy [M] for playing in arena [A].

An arena is a forest (the nodes are the moves; edge relation is called
enabling); each move has a label from { PQ, PA, OQ, OA }.

Example. The arena [exp]

oQ q
// [\
PA o1 2 3
Equivalence Checking

Haifa, 8 Sep 2009 15 / 35

Basics of Game Semantics by Examples

Take - M : A.

@ Type A is interpreted as (a 2-player game called) arena [A].
@ Term M is interpreted as a P-strategy [M] for playing in arena [A].

An arena is a forest (the nodes are the moves; edge relation is called
enabling); each move has a label from { PQ, PA, OQ, OA }.

Example. The arena [exp]

oQ q
/
PA 0" 1 4 2‘ A 3
[2:exp] is the P-strategy:
oQ «g
PA 2
Equivalence Checking Haifa, 8 Sep 2000 15 / 35

Interpreting if-then-else

Write “if Bthen Melse N in prefix form:
if BMN : exp

@ if : exp — exp — exp — exp is interpreted as a P-strategy
@ program context [|BM N determines an O-strategy
for playing in the arena [exp — exp — exp — exp]

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 16 / 35

Interpreting if-then-else

Write “if Bthen Melse N in prefix form:
if BMN : exp

@ if : exp — exp — exp — exp is interpreted as a P-strategy
@ program context [|BM N determines an O-strategy
for playing in the arena [exp — exp — exp — exp]

B M N
exp — exp — exp — exp

oQ q
PQ q

OA t

PQ q

OA 3

PA 3

(assuming O-strategy given by [|t34).
Equivalence Checking Haifa, 8 Sep 2009 16 / 35

Interpreting if-then-else

Write “if Bthen Melse N : exp” in prefix-form:
if BMN : exp

@ if : exp — exp — exp — exp is interpreted as a P-strategy
@ program context [|BM N determines an O-strategy
for playing in the arena [exp — exp — exp — exp]

B M N
exp — exp — exp — exp

oQ q
PQ
OA f
PQ q
OA 4
PA 4

(assuming O-strategy given by []f34).
Equivalence Checking Haifa, 8 Sep 2009 17 / 35

Interpreting commands

The arena [com |

oQ run
PA done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 18 / 35

Interpreting commands

The arena [com |

oQ
PA
[skip : com] is the P-strategy:
oQ
PA

run

done

run

done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009

18 / 35

Interpreting commands

The arena [com |

oQ run
\
PA done
[skip : com] is the P-strategy:
oQ run
PA done
Interpreting sequential composition: ; : com — com — com
com — com — com
oQ run
PQ run
OA done
PQ run
OA done
PA done

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 18 / 35

Interpreting var

Following Reynolds, we view a variable type as given (in an object-oriented
style) by a product of its read method and its write method. Thus

var = expx(Hcom)

i€w

@ read-part: first component is the value held at that location
@ write-part: second component contains countably many commands,
namely, to write 0 (respectively 1, 2, etc.) to that location.

Haifa, 8 Sep 2009 19 / 35

Luke Ong (Oxford) Equivalence Checking

Interpreting var

Following Reynolds, we view a variable type as given (in an object-oriented
style) by a product of its read method and its write method. Thus

var = expx(Hcom)

i€w

@ read-part: first component is the value held at that location

@ write-part: second component contains countably many commands,
namely, to write 0 (respectively 1, 2, etc.) to that location.

Thus arena [var] is the product arena [exp] x [];c,, [com]:
(0]6] read write(0) write(1) write(2)
// N \ \ \
PA~ 0" 1 2 e ok ok ok

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 19 / 35

Interpreting assignment: X .= M

Write X := M as assign X M. Thus
@ assign : var — exp — com is interpreted as a P-strategy
@ context [|X M determines an O-strategy

for playing in the arena [var — exp — com].

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 20 / 35

Interpreting assignment: X .= M

Write X := M as assign X M. Thus

@ assign : var — exp — com is interpreted as a P-strategy

@ context []XM

for playing in the arena [var — exp — com].

oQ
PQ
OA

PQ write(5)

OA
PA

(assuming O-strategy is given by context [] X 5)

Luke Ong (Oxford)

determines an O-strategy

X

var

ok

M

— exp

Equivalence Checking

com
run

done

Haifa, 8 Sep 2009

20 / 35

Interpreting block-allocated local variables: new

We decompose the formation

I,x:var M :com

'~ newx:=ninM : com

into two constructions:
© Currying: T F Ax :var.M : var — com

© Application by a constant: new,, : (var — com) — com.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 21 /35

Interpreting block-allocated local variables: new

We decompose the formation

I,x:var M :com

'~ newx:=ninM : com

into two constructions:

© Currying: T F Ax :var.M : var — com

© Application by a constant: new,, : (var — com) — com.
Thus we have

newx :=nin M := new, (Ax : var.M)
Accordingly [new x := nin M] is the composite

Ax:var.
Iri [T Axvar.M] (var — com) fewn com

Question. What is the strategy new,?

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009

21/ 35

The strategy new,, : (var — com) — com

The plays in new,, should correspond to the behaviour of a prima facie
variable (initialized to n). Namely, they should satisfy:

Good Variable Property J

Whenever the variable is read, it yields the value last written to it.

Thus, the (maximal) plays are defined to be words matching the regular
expression:

qg-q'b. (read - n) Zwr/te i)-ok-(read-i)* - done'? - done

i>0

The (infinite) alphabet is the move-set of (var — com{) — com (subject
to the labelling convention to distinguish copies of the same subarena).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 22 /35

Good Variable Behaviour: An Example Play in new,

(var
oQ
PQ
oQ read
PA n

0Q write(5)

PA ok
0oQ read
PA 9
OA

PA

Luke Ong (Oxford)

— com<1>)

runt®)

done'!)

Equivalence Checking

com

run

done

Haifa, 8 Sep 2009

23 /35

Outline

© Using Game Semantics to Decide Observational Equivalence

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 24 / 35

Finitary Idealized Algol 1A;: recursion-free, finite base types

Recall: ord(b) :=0 ord(T; — T») := max(ord(T1) + 1,0rd(T2))

An lAg-term xp: T, ,xp: ToEM: T

is an i-th order term just if
ord(Tj) < iand ord(T) <.

@ |A;: collection of j-th order |A¢-terms.
@ |A;j+while is IA; augmented by while-loops
o IAj+Y; (where j < i) is IA; augmented by

fF:TEM:T
Fre-pfT.M: T

where the premise is i-th order, and ord(T) < j.

l.e. IA;+Y; consists of |A; and recursively-defined terms of order at
most j.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 25 /35

First steps in Algorithmic Game Semantics

Theorem (Full Abstraction, Abramsky + McCusker 1997)

Observational equivalence of IA is characterized by complete plays
(i.e. plays ending with a move that answers the opening question):

M=~ N < cplays([T - M : A]) =cplays([T - N : A])

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 26 / 35

First steps in Algorithmic Game Semantics

Theorem (Full Abstraction, Abramsky + McCusker 1997)

Observational equivalence of IA is characterized by complete plays
(i.e. plays ending with a move that answers the opening question):

M=~ N < cplays([T - M : A]) =cplays([T - N : A])

At low types, game semantics admits a concrete representation.

Theorem (Ghica + McCusker 2000)
In 1A>+while:
O cplays([[' = M : A]) is regular. Further

Q cplays(['+ M : A]), given as a DFA (or regular expression), can be
constructed by recursion over syntax.

Hence = in |As reduces to the problem of DFA-equivalence.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 26 / 35

A Complete Classification of Decidable Fragments of Finitary 1A

OBs EqQuiv,: Given #-nfs M and N in sublanguage L of IA, does M ~ N?J

‘ pure ‘ +while ‘ +Yo ‘ +Y,
1Ag PTIME - - -
1A PSPACE | DPDA EqQuiv | undecidable
IA, | PSPACE PSPACE | DPDA EQuiv | undecidable
IAs; | EXPTIME | EXPTIME | DPDA EQuiv | undecidable
IA;,i > 4 | undecidable | undecidable undecidable undecidable

Undecidability results: O. LICS'02 and Murawski LICS'03.

+ PSPACE results: Murawski TCS 2005.
EXPTIME results: O. LICS’02; Murawski + Walukiewicz FOSSACS'05.
DPDA EqQulv results: Murawski, Walukiewicz + O. ICALP'05.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 27 / 35

Deciding ~ for |Az+while is EXPTIME-complete (M.+W.’05)

Visibly pushdown automata (Alur+Madhusudan, STOC'04)
@ Stack action is determined by input alphabet read:
Y =Y push + Lpop + Lnoop
@ Excellent closure properties (almost as good as regular languages)

VPA-languages: Closed under complementation and intersection
(cf. DPDA).

L(A)C L(B) < L(ANLB)=o
is EXPTIME-complete, and in PTIME if B deterministic.

Theorem (Murawski+Walukiewicz 2005)
The complete plays of (IAz+while)-terms are VPA-recognizable. J

EXPTIME-hardness: by reducing the EXPTIME-complete problem
FINITE TREE AUTOMATA EQUIVALENCE (Seidl 1990) to it.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 28 / 35

Deciding ~ for |A;+Yy (for i =1,2,3) is equivalent to DPDA-EqQuIv

[Murawski, O. + Walukiewicz ICALP'05]

IA;4+Yo: Only terms of base type can call themselves recursively. This
includes all tail-recursive functions (i.e. iterations) and:

Example. Non tail-recursive ground recursion:
¢ : com, b : bool - pup®™.if bthen (p; c; p)elseskip : com

DPDA-Equivalenc hardness

Theorem

There is a translation that maps a DPDA A to a (I1A1+Y)-term
x 1 exp b Mga : com such that for any A, B, we have L(A) = L(B) iff
MA ~ MB.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 29 / 35

Outline

@ Homer: Higher-order Observational-equivalence Model checkER

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 30/ 35

HOMER: Higher-order Observational-equivalence Model checkER

[Hopkins + O. CAV 2009]

HOMER: a prototype tool implementing Murawski and Walukiewicz's
algorithm.

HoMER maps |Asz+while terms to VPA representing the complete plays in
their game semantics, then check for the equivalence of the VPA.

If the input term is at most 2nd-order (possibly with iteration), the
VPA-compile is just a DFA.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 31/35

HOMER: Higher-order Observational-equivalence Model checkER

[Hopkins + O. CAV 2009]

HOMER: a prototype tool implementing Murawski and Walukiewicz's
algorithm.

HoMER maps |Asz+while terms to VPA representing the complete plays in
their game semantics, then check for the equivalence of the VPA.

If the input term is at most 2nd-order (possibly with iteration), the
VPA-compile is just a DFA.

Counterexample. If the terms are inequivalent, HOMER will produce both
a game-semantic and an operational-semantic counterexample, in the form
of a play and a separating context respectively.

Property checking. HOMER can also model check a term against a regular
property or LTL formula.

HOMER is written in about 8 KLOC of F#, including about 600 LOC for
the VPA toolkit. It is the first model checker for third-order_programs.
Equivalence Checking Haifa, 8 Sep 2009 31/35

Example 1

X : exp |- x

X ¢ ex - new in = x ; 1f X = then !X else !
pI X in (X ; if !X 0 th 1X el 1X)

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 32 /35

Example 1’

X : exp |- x

X : exp |- if x = 0 then x else x

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 33 /35

Example 2: Sorting algorithms

Why sorting?

“... it seems impossible to use Model Checking to verify that a sorting
algorithm is correct since sorting correctness is a data-oriented property
involving several quantifications and data structures.” [Bandera user
manual]

Example: Equivalence of (respective implementations of) bubble sort and
insertion sort.

@ Program parameterized over array size (n) and basic data type (Z
MOD 3).

@ The DFA model is fully abstract. Only the actions of the non-local
array are observable, and hence, represented.

@ An array of size 20 (over integers MOD 3) has circa 3% states (about
3.5 billion). Our model is highly abstract (though still accurate): it
has only about 5500 states!

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 34 /35

Conclusions and Further Directions

o Game semantics has clear operational content, while admitting
compositional methods in the style of denotational semantics.

@ The game-semantic approach to observational equivalence checking is
fully automatic, sound and complete, and compositional.

@ The model (given by complete plays) extracted is highly accurate, yet
“compact”.

@ To extend to infinite data types, use abstraction refinement
techniques (Bakewell + Ghica, TACASO08) or prove auxiliary
data-independence results.

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 35 /35

Conclusions and Further Directions

o Game semantics has clear operational content, while admitting
compositional methods in the style of denotational semantics.

@ The game-semantic approach to observational equivalence checking is
fully automatic, sound and complete, and compositional.

@ The model (given by complete plays) extracted is highly accurate, yet
“compact”.

@ To extend to infinite data types, use abstraction refinement
techniques (Bakewell + Ghica, TACASO08) or prove auxiliary
data-independence results.

Further directions

@ Performance: Exploit abstraction refinement techniques (CEGAR),
and acceleration technologies (SMT-solvers) to improve scalability.

© Challenge of verifying highly structured programs (e.g. object
orientation / functional features e.g. Javascript, Perl, etc).

Luke Ong (Oxford) Equivalence Checking Haifa, 8 Sep 2009 35 /35

	Idealized Algol and Observational Equivalence
	Game Semantics: An Impressionistic Introduction
	Using Game Semantics to Decide Observational Equivalence
	Homer: Higher-order Observational-equivalence Model checkER

