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Abstract 

Multilayered Neural Networks and “Deep Learning” have become an incredible success for 

almost all real world applications of pattern recognition and machine learning. Deep neural 

networks are classification models that are built on many layers of linear threshold 

classifiers that formally mimic biological neurons and layered neural nets. They have been 

extensively analyzed using statistical mechanics techniques, but the theoretical 

understanding of the reasons they perform so well in practice and their design principles is 

far from satisfactory.  

In this talk I will present a novel analysis of Deep Neural Networks (DNN) based on a 

theoretical framework for optimal data representation known as the Information Bottleneck 
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method. In this method we consider optimal data representations as minimal sufficient 

statistics, namely simplest (possibly stochastic) functions of samples that capture 

information on the parameters of the distribution. This we achieve through a tradeoff 

between compression and prediction that looks like free-energy minimization in statistical 

physics.  

We argue that both the structure (number of layers and width of each layer) and the optimal 

connectivity (weights) of the layers are determined by the cascade of second order phase 

transitions of the Information Bottleneck tradeoff. I will explain this interesting connection 

and show how it can yield new design principles for DNN’s and new learning algorithms. 

This is a joint work with Noga Zaslavsky. 

 

 

  


